UNIVERSITY OF NORTH BENGAL
B.Sc. Honours 1st Semester Examination, 2021

GE1-P1-MATHEMATICS

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE1, GE2, GE3, GE4 and GE5.
 Candidates are required to answer any one from the five courses and they should mention it clearly on the Answer Book.
 GE1
 CALCULUS, GEOMETRY AND DIFFERENTIAL EQUATION
 GROUP-A

1. Answer any four questions from the following:
(a) Find the points of inflexion on the curve $\left(\theta^{2}-1\right) r=a \theta^{2}$. 3
(b) Find the envelopes of the lines $\frac{x}{a}+\frac{y}{b}=1$, where a and b are parameters related 3 by $a+b=c$.
(c) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9, x+y-2 z=4$ and the origin.
(d) Evaluate $\int_{0}^{1} x e^{-\sqrt{x}} d x$ using reduction formula.
(e) Obtain the singular solution of the equation $(x p-y)^{2}=p^{2}-1$, where $p=d y / d x$.
(f) Determine the nature of the quadric $5 x^{2}-6 x y+5 y^{2}+22 x-26 y+29=0$.

GROUP-B

2. Answer any four questions from the following:
(a) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x}},|x|<1$, then prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0$.
(b) Find the asymptotes of the curve $x^{3}+2 x^{2} y-4 x y^{2}+8 y^{3}-4 x+8 y-10=0$.
(c) Find the area of the region lying between the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$ and its asymptote.
(d) Solve: $y(2 x y+1) d x+x\left(1+2 x y+x^{2} y^{2}\right) d y=0$
(e) Find a, b such that, $\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1$.
(f) Find the volume of the solid generated by revolving the cardioid $r=a(1+\cos \theta) \quad 6$ about initial line.

GROUP-C

Answer any two questions from the following

3. (a) Find the range of values of x for which $y=x^{4}-6 x^{3}+12 x^{2}+5 x+7$ is concave upward or downward.
(b) Find the length of the arc of the cardioid $r=a(1-\cos \theta)$ lying inside the circle $r=a \cos \theta$.
4. (a) Solve by using Bernoulli form $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$.

7
(b) Solve: $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$
5. (a) Reduce the equation $7 x^{2}-2 x y+7 y^{2}-16 x+16 y-8=0$ to its canonical form and hence determine the nature of the conic.
(b) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ is a great circle.
6. (a) Find the value of $y_{n}(0)$, where $y=\log \left(x+\sqrt{1+x^{2}}\right)$.
(b) If $I_{m, n}=\int_{0}^{\pi / 2} \cos ^{m} x \sin n x d x$, then show that $I_{m, n}=\frac{1}{m+n}+\frac{m}{m+n} I_{m-1, n-1}$.

GE2

ALGEBRA

GROUP-A

1. Answer any four questions from the following:
(a) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^{4}+m x^{2}+n x-p=0$, where m, n, p are positive.
(b) Prove that $\sqrt{i}+\sqrt{-i}=\sqrt{2}$.
(c) Prove that the eigenvalues of a real skew symmetric matrix are purely imaginary or zero.
(d) Find the sum of $99^{\text {th }}$ power of the roots of the equation $x^{7}-1=0$.
(e) Use Cayley-Hamilton theorem to find A^{-1} for the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 3 & 2
\end{array}\right]
$$

(f) Find the quadratic equation whose roots are twice the roots of $2 x^{2}-5 x+2=0$.

GROUP-B

2. Answer any four questions from the following:
(a) If $2 \cos \theta=x+\frac{1}{x}$ and θ is real, prove that $2 \cos n \theta=x^{n}+\frac{1}{x^{n}}, n$ being an integer.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHGE1/2021

(b) Solve the equation $16 x^{4}-64 x^{3}+56 x^{2}+16 x-15=0$ whose roots are in arithmetic progression.
(c) Find integers u and v satisfying $52 u-91 v=78$.
(d) Find all eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 4 & 3 & 1 \\ 2 & 1 & 1\end{array}\right]$.
(e) For what values of λ the following system of equations are consistent?

$$
\begin{aligned}
& x-y+z=1 \\
& x+2 y+4 z=\lambda \\
& x+4 y+6 z=\lambda^{2}
\end{aligned}
$$

(f) Use Cayley-Hamilton theorem to find A^{100}, where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.

GROUP-C

Answer any two questions from the following
3. (a) If $\log \sin (\theta+i \varphi)=\alpha+i \beta$, then prove that $2 e^{2 \alpha}=\cosh 2 \varphi-\cos 2 \theta$.
(b) Find the relation among the coefficients of the equation $a_{0} x^{4}+4 a_{1} x^{3}+6 a_{2} x^{2}+4 a_{3} x+a_{4}=0$, so that the second term and the fourth term may be removed by the transformation $x=y+h$.
4. (a) If α, β, γ are the roots of the equation $x^{3}+q x+r=0$, find the equation whose roots are $\beta+\gamma-2 \alpha, \gamma+\alpha-2 \beta, \alpha+\beta-2 \gamma$.
(b) Determine all values of $(1+i \sqrt{3})^{3 / 4}$ and show that their product is 8 .
5. (a) Solve the equation $3 x^{3}+5 x^{2}+5 x+3=0$, which has three distinct roots of equal moduli.
(b) If roots of $a x^{3}+b x^{2}+c x+d=0$ are in arithmetic progression. Show that

6 $2 b^{3}-9 a b c+27 a^{2} d=0$.
6. (a) Determine the conditions for which the system of equation has
(i) only one solution
(ii) no solution
(iii) infinitely many solution.

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=b \\
& x+a y+3 z=b+1
\end{aligned}
$$

(b) The matrix of a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with ordered basis $\{(0,1,1),(1,0,1),(1,1,0)\}$ of \mathbb{R}^{3} is given by

$$
\left(\begin{array}{rrr}
0 & 3 & 0 \\
2 & 3 & -2 \\
2 & -1 & 2
\end{array}\right)
$$

Find the matrix of T relative to the ordered basis $\{(2,1,1),(1,2,1),(1,1,2)\}$ of \mathbb{R}^{3}.

GE3
 DIFFERENTIAL EQUATION AND VECTOR CALCULUS
 GROUP-A

1. Answer any four questions from the following:
(a) Show that the function $f(x, y)=x y^{2}$ does not satisfy the Lipschitz condition on the strip $|x| \leq 1,|y|<\infty$.
(b) Find the Wronskian of $\left\{1,1+x, 1+x+x^{2}+x^{3}\right\}$.
(c) Define Lipschitz constant. Find Lipschitz constant for the function $f(x, y)=x^{2} y^{2}$ defined on $|x| \leq 1,|y| \leq 1$.
(d) Solve: $\frac{d^{5} y}{d x^{5}}-2 \frac{d^{4} y}{d x^{4}}+\frac{d^{3} y}{d x^{3}}=0$
(e) Examine whether the vector valued function $\vec{r}=t^{3} \hat{i}+e^{t} \hat{j}+\frac{1}{t+3} \hat{k}$ is continuous at $t=-3$ or not.
(f) Evaluate: $\lim _{t \rightarrow 1}\left[\frac{t^{3}-1}{t-1} \hat{i}+\frac{t^{2}-3 t+2}{t^{2}+t-2} \hat{j}+\left(t^{2}+1\right) e^{t-1} \hat{k}\right]$

GROUP-B

2. Answer any four questions from the following:
(a) (i) If y_{1} and y_{2} are two independent solutions of the linear equation $\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+q y=0$, then show that the Wronskian $W\left(y_{1}, y_{2}\right)=A e^{-\int p d x}$, where A is a constant.
(ii) Show that the functions $\left\{e^{2 x}, e^{2 x} \cos 4 x, e^{2 x} \sin 4 x\right\}$ are linearly independent.
(b) Show that linearly independent solutions of $y^{\prime \prime}-2 y^{\prime}+2 y=0$ are $e^{x} \sin x$ and $e^{x} \cos x$. What is the general solution? Find the solution $y(x)$ with the conditions $y(0)=2, y^{\prime}(0)=-3$.
(c) Solve: $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+x^{-1}\right)$
(d) Solve: $\left(D^{3}-1\right) y=x \sin x, \quad D \equiv \frac{d}{d x}$
(e) (i) Find the co-ordinates of the point where the line $\vec{r}=t \hat{i}+(1+2 t) \hat{j}-3 t \hat{k}$ intersects the plane $3 x-y-z=2$.
(ii) Show that the graph of $\vec{r}(t)=t \hat{i}+\frac{1+t}{t} \hat{j}+\frac{1-t^{2}}{t} \hat{k}, t>0$ lies on the plane $x-y+z+1=0$.
(f) (i) Find the domain of the vector function $h(t) F(t)$, where $h(t)=\sin t$ and

$$
F(t)=\frac{1}{\cos t} \hat{i}+\frac{1}{\sin t} \hat{j}+\frac{1}{\tan t} \hat{k}
$$

(ii) Find $(F \times G)(t)$ if $F(t)=t^{2} \hat{i}+t \hat{j}-(\sin t) \hat{k}$ and $G(t)=t^{2} \hat{i}+\frac{1}{t} \hat{j}+5 \hat{k}$.

GROUP-C

Answer any two questions from the following

3. (a) (i) Solve by the method of variation of parameters $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \log x$.
(ii) Evaluate: $\frac{1}{D^{2}-3 D+2} x e^{3 x}$
(iii) Solve: $\frac{d^{2} y}{d x^{2}}+16 y=1, \quad y(0)=1, \quad y^{\prime}(0)=2$
(b) (i) Solve by using the method of undetermined coefficient

$$
\left(D^{2}+D-6\right) y=10 e^{2 x}-18 e^{3 x}-6 x-11
$$

(ii) Solve: $\left(D^{4}+2 D^{3}-3 D^{2}\right) y=x^{2}+3 e^{2 x}+4 \sin x$
(c) (i) Solve the equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-w y \\
\frac{d y}{d t}=w x
\end{array}\right.
$$

and show that the point (x, y) lies on a circle.
(ii) Solve the system of equations

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-x+6 y \\
\frac{d y}{d t}=x-2 y
\end{array}\right.
$$

(d) (i) Find the slope of the line in R^{2} for the vector equation

$$
\vec{r}(t)=(1-2 t) \hat{i}-(2-5 t) \hat{j}
$$

(ii) Define continuity of a vector valued function.
(iii) Show that the vector function $\vec{r}(t)=\left\{\begin{array}{cc}\frac{\sin t}{t} \hat{i}+t \hat{j}+t^{2} \hat{k} & , t \neq 0 \\ \hat{i} & , t=0\end{array}\right.$ is continuous at $t=0$.
(iv) Find a vector function F whose graph is the curve of intersection of the hemisphere $z=\sqrt{4-x^{2}-y^{2}}$ and the curve $y=x^{2}$.

GE4
 GROUP THEORY

GROUP-A

1. Answer any four questions from the following:
(a) Let (S, \circ) be a semigroup. If for all $x, y \in S, x^{2} \circ y=y=y \circ x^{2}$, prove that (S, \circ) is an abelian group.
(b) Suppose H, K are subgroups of index 2 in a group G. Prove that $H \cap K$ is a normal subgroup of G.
(c) Let $G=\langle a\rangle$ be a cyclic group of order n. Prove that every subgroup of G is of the form $\left\langle a^{m}\right\rangle$, where m is a divisor of n.
(d) Find all elements of order 10 in the group $\left(\mathbb{Z}_{30},+\right)$.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHGE1/2021

(e) Show that there does not exist an onto homomorphism from the group $\left(\mathbb{Z}_{6},+\right)$ to $\left(\mathbb{Z}_{4},+\right)$.
(f) Prove or disprove: $(\mathbb{Q},+)$ is isomorphic to $\left(\mathbb{Q}^{+}, \cdot\right)$

GROUP-B

2. Answer any four questions from the following:
(a) Let S be the set of all permutations on the set $\{1,2,3\}$. Show that S forms a nonabelian group with respect to multiplication.
(b) Suppose that the order of an element a in a group (G, \circ) is n. Show that $O\left(a^{m}\right)=\frac{n}{d}$, where $d=\operatorname{gcd}(m, n)$. Find the order of $\overline{n-1}$ in $\left(\mathbb{Z}_{n},+\right)$.
(c) (i) Let H be a subgroup of a group G and $a, b \in G$. Prove that $b \in H a$ iff $b a^{-1} \in H$.
(ii) Let H be a subgroup of a group G. Show that the set of all distinct left cosets of H in G and the set of all distinct right cosets of H in G have the same cardinality.
(d) (i) If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.
(ii) Prove that N is a normal subgroup of G iff $g N g^{-1}=N$ for every $g \in G$.
(e) (i) Let (G, \circ) be a group and H, K be subgroups of (G, \circ). Show that $H K$ forms a $4+2$ subgroup of (G, \circ) iff $H K=K H$.
(ii) Check whether the union of two subgroups of a group (G, \circ) is a subgroup of (G, \circ) or not?
(f) (i) Let (G, \circ) be a group and a mapping $\varphi: G \rightarrow G$ is defined by $4+2$ $\varphi(x)=x^{2}, x \in G$. Prove that φ is a homomorphism iff G is commutative.
(ii) Prove that $\left(\mathbb{Z}_{4},+\right)$ and "Klein's 4-group" are not isomorphic.

GROUP-C

Answer any two questions from the following

3. (a) (i) Let $G=S_{3}, G^{\prime}=(\{-1,1\}, \cdot)$ and $\varphi: G \rightarrow G^{\prime}$ is defined by $\varphi(\alpha)=\left\{\begin{array}{rc}1 & , \quad \alpha \text { be an even permutation in } S_{3} \\ -1 & , \quad \alpha \text { be an odd permutation in } S_{3}\end{array}\right.$.
Then, (I) Show that φ is homomorphism.
(II) Find $\operatorname{ker} \varphi$.
(III) Deduce that A_{3} is a normal subgroup of S_{3}.
(ii) Prove that a finite cyclic group of order n is isomorphic to $\left(\mathbb{Z}_{n},+\right)$.
(b) (i) Let H be a normal subgroup of G. Prove that the quotient group G / H is abelian iff $x y x^{-1} y^{-1} \in H$ for all $x, y \in G$.
(ii) Suppose that a subgroup H of a group G has the property that $x^{2} \in H$ for every $x \in G$. Prove that H is normal in G and G / H is abelian.
(iii) Let $G=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in \mathbb{R}\right.$ and $\left.a d \neq 0\right\}$ and $H=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in \mathbb{R}\right\}$. Show that H is a normal subgroup of G.

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHGE1/2021

(c) Let M be the set of all real matrices $\left\{\left(\begin{array}{ll}a & a \\ b & b\end{array}\right): a+b \neq 0\right\}$. Prove that
(i) (M, \circ) is a semi-group under matrix multiplication.
(ii) there is no left identity in the semi-group.
(iii) $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ is a right identity.
(d) (i) Let $(G, \circ),\left(G^{\prime}, *\right)$ be two groups and $\varphi:(G, \circ) \rightarrow\left(G^{\prime}, *\right)$ be an onto homomorphism. Then prove that $G / \operatorname{ker} \varphi \simeq G^{\prime}$.
(ii) Let G be a cyclic group of order 10 and G^{\prime} be a cyclic group of order 5 . Show that there exists a homomorphism φ of G onto G^{\prime} with $o(\operatorname{ker} \varphi)=2$.

GE5

NUMERICAL METHODS

GROUP-A

1. Answer any four questions from the following:
(a) If $f(x)=4 \cos x-6 x$, find the relative percentage error in $f(x)$ for $x=0$, if the error in $x=0.005$.
(b) Deduce the iterative procedure $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for evaluating \sqrt{a} using NewtonRaphson method.
(c) Prove that $\left(\frac{\Delta^{2}}{E}\right) x^{3}=6 x h^{2}$ where the notations used have their usual meanings.
(d) Show that $\nabla y_{n+1}=h\left[1+\frac{1}{2} \nabla+\frac{5}{12} \nabla^{2}+\cdots \cdots\right] D y_{n}$, where D is the differential operator.
(e) Write down the convergence of bisection method.
(f) What is the geometrical significance of Simpson's one-third rule?

GROUP-B

2. Answer any four questions from the following:
(a) If a number is connected to n significant figures and the first significant figure of the number is k, then prove that the relative error $\varepsilon_{r}<\frac{1}{k \cdot 10^{n-1}}$.
(b) Find the positive root of the equation $x^{3}+x-1=0$ by fixed point iteration method correct upto three decimal places.
(c) Find a real root of the equation $x^{x}+2 x-2=0$ correct upto five decimal places using bisection method.
(d) Define backward difference operator ∇ and shifting operator E. Show that

$$
\sum_{k=0}^{n-1} \Delta^{2} f_{k}=\Delta f_{n}-\Delta f_{0}
$$

UG/CBCS/B.Sc./Hons./1st Sem./Mathematics/MATHGE1/2021

(e) Use Runge-Kutta method of order two to find $y(0 \cdot 1)$ and $y(0 \cdot 2)$ correct upto four

6 decimal places given $\frac{d y}{d x}=y-x, \quad y(0)=2$.
(f) Explain Gauss-Seidel method for solving a system of linear equations. Obtain the sufficient condition for convergence of Gauss-Seidel method.

GROUP-C

Answer any two questions from the following

3. (a) Evaluate $\int_{0}^{\pi / 2} \sqrt{1-0.162 \sin ^{2} \theta} d \theta$, by Simpson's $\frac{1}{3}$ rd rule, correct upto 4 decimal places taking 12 points.
(b) Given $\frac{d y}{d x}=\frac{-y}{1+x}, y(0.3)=2$. Compute $y(1)$ by Euler's method, correct upto four decimal places, taking step length $h=0.1$.
4. (a) Solve the system of equations by Gauss-elimination method

$$
\begin{aligned}
& 3 x+9 y-2 z=11 \\
& 4 x+2 y+13 z=24 \\
& 4 x-2 y+z=-8
\end{aligned}
$$

correct upto 2 decimal places.
(b) Using Newton-Raphson method find a positive root of the equation $e^{x}-3 x=0$ correct upto four decimal places.
5. (a) Find $f(x)$ as a polynomial in x by using the following table:

x	0	2	4	6	8
$f(x)$	2.51881	2.53148	2.54407	2.55630	2.56820

(b) Obtain the missing terms in the following table:

x	1	2	3	4	5	6	7	8
$f(x)$	1	8	$*$	64	$*$	216	343	512

6. (a) Explain the method of fixed point iteration with the condition of convergence for numerical solution of an equation of the form $x=\phi(x)$.
(b) What is interpolation? Establish Lagrange's polynomial interpolation formula.

